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The Boltzmann Equation for Bose–Einstein Particles:
Velocity Concentration and Convergence to Equilibrium
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Long time behavior of solutions of the spatially homogeneous Boltzmann
equation for Bose–Einstein particles is studied for hard potentials with certain
cutoffs and for the hard sphere model. It is proved that in the cutoff case solu-
tions as time t → ∞ converge to the Bose–Einstein distribution in L1 topol-
ogy with the weighted measure (�+ |v|2)dv, where �= 1 for temperature T �
Tc and � = 0 for T < Tc. In particular this implies that if T < Tc then the
solutions in the velocity regions {v ∈ R3| |v| � δ(t)} (with δ(t) → 0) converge
to a unique Dirac delta function (velocity concentration). All these conver-
gence are uniform with respect to the cutoff constants. For the hard sphere
model, these results hold also for weak or distributional solutions. Our meth-
ods are based on entropy inequalities and an observation that the convergence
to Bose–Einstein distributions can be reduced to the convergence to Maxwell
distributions.

KEY WORDS: Bose–Einstein particles; temperature, entropy; velocity concen-
tration; convergence to equilibrium.

1. INTRODUCTION

The Boltzmann equation for Bose–Einstein particles under consideration
(after normalizing a quantum parameter) is given by

∂

∂t
f (v, t) =

∫∫
R3×S2

B(v−v∗,ω)
(
ff ′

∗(1+f )(1+f∗)

−ff∗(1+f ′)(1+f ′
∗)
)
dω dv∗ (BBE)
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which describes time-evolution of dilute, space homogeneous, and one spe-
cies Bose gases. Physical background and derivations of this model can be
found in Chapman and Cowling (9, Chap. 17), Nordheim,(23) and Uehling
and Uhlenbeck.(31) In kinetic theory, Eq. (BBE) and its modifications
attract research interests in their amazing quantum effects: For very low
temperatures, such models can be used to describe the process of the for-
mation of the Bose–Einstein condensation (i.e. the velocity concentration),
see e.g. Semikov and Tkachev.(27,28)

Before going to main subject, let us introduce notations. In Eq. (BBE),
a solution f (v, t) is the density of the number of particles at time t ∈ [0,∞)

with the velocity v ∈ R3 (therefore f (v, t) should be � 0), and f∗, f ′, f ′∗
denote the same function f at velocity variables v∗, v′, v′∗ respectively, i.e.

f =f (v, t), f∗ =f (v∗, t), f ′ =f (v′, t), f ′
∗ =f (v′

∗, t),

where v, v∗ and v′∗, v′∗ are velocities of two particles before and after their
collision; they have the following relations due to the conservations of
momentum and kinetic energy:

v′ +v′
∗ =v+v∗, |v′|2 +|v′

∗|2 =|v|2 +|v∗|2 (1.1)

which can be solved explicitly as

v′ =v− ((v−v∗) ·ω)ω, v′
∗ =v∗ + ((v−v∗) ·ω)ω, ω∈S2, (1.2)

where u · v denotes the scale product in R3, |u| = √
u ·u, and S2 = {ω ∈

R3||ω|=1}. (1.2) implies |(v′ −v′∗) ·ω|= |(v−v∗) ·ω| and |v′ −v′∗|= |v−v∗|
which as well as (1.1)–(1.2) are often used in the fundamental operations
of the Boltzmann collision integrals.(6,7)

The collision kernel B(v − v∗,ω) ≡ B(|v − v∗|, cos θ) is a non-neg-
ative Borel function of (|v − v∗|, cos θ) only, where cos θ = |n · ω|,n =
(v−v∗)/|v−v∗|, θ ∈ [0, π/2]. For molecular interaction potentials with the
inverse-power law, B takes the form

B(v−v∗,ω)=b(cos θ)|v−v∗|γ .

In this paper we mainly consider the hard potentials and the hard sphere
model: 0<γ �1. For the hard sphere model, B is given by b(τ)= const.τ
and γ =1, i.e.

B(v−v∗,ω)= const. cos(θ)|v−v∗| (1.3)
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which is the only “non-cutoff” kernel satisfying
∫ 1

0 b(τ)dτ <∞.(6)

Function spaces for solutions in the velocity variable are usually cho-
sen weighted Lebesgue spaces L1

s (R
3) (s�0) which are defined for measur-

able functions by

f ∈L1
s (R

3)⇐⇒‖f ‖L1
s

:=
∫

R3
(1+|v|2)s/2|f (v)|dv<∞

and we denote L1
0(R

3)=L1(R3) for s=0. To study velocity concentration
at v=0 we also use the |v|s-weighted norm (for s >0)

‖f ‖L1
s (\0) :=

∫
R3

|v|s |f (v)|dv.

The condition on the L1-initial data f |t=0 = f0 is given by 0 � f0 ∈
L1

2(R
3) which means that the mass and kinetic energy of the gas system

(per unit space volume) are finite and thus the entropy is also finite (see
Lemma 2). Since after a velocity translation the function f (v + v0, t) is
still a solution of Eq. (BBE) with the initial datum f0(v + v0), we can
assume that the mean velocity v0 is zero. This is equivalent to assuming
that

∫
R3 vf0(v)dv=0.

Classical calculation using (1.1)–(1.2) shows at least formally that
a solution f (v, t) of Eq. (BBE) satisfies the conservation of the mass,
momentum, and energy (such a solution will be called a conservative solu-
tion):

∫
R3
(1, v, |v|2)f (v, t)dv=

∫
R3
(1, v, |v|2)f0(v)dv

and the entropy identity:

d

dt
S(f (t))= 1

4
D(f (t)),

where f (t)≡f (·, t), S(f ) is the entropy functional:

S(f )=
∫

R3

(
(1+f ) log(1+f )−f logf

)
dv (1.4)

D(f ) is the entropy dissipation:

D(f )=
∫∫∫

R3×R3×S2
B(v−v∗ω)	(f )dω dv∗ dv
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and

	(f )=	 (f ′f ′
∗(1+f )(1+f∗), ff∗(1+f ′)(1+f ′

∗)
)
. (1.5)

Here

	(x, y)= (x−y) log
(
x

y

)
m x,y�0 (1.6)

and we define 	(x, y)= ∞ for x > 0 = y or 0 = x <y; 	(x, y)= 0 for x=
y=0.

Mathematical results on the BBE model are so far rather incom-
plete due to its strong non-linearity. In ref. 20, under a strong cutoff
assumption on the kernel B (see (6.1)) and assuming the initial data are
isotropic, f0(v)= f0(|v|), we proved the global existence and uniqueness
of conservative solutions of Eq. (BBE) and obtained some weak results
on the convergence to equilibrium sates and the velocity concentration.
With a similar cutoff assumption on B, the results on global existence
and uniqueness of conservative isotropic solutions were extended to dis-
tributional (i.e. measure-valued) isotropic solutions by Escobedo et al.(14)

using rigorously Dirac delta functions. By establishing a weak form of
Eq. (BBE) and a weak stability of distributional solutions we extended
the existence result of ref. 14 to including the hard sphere model.(22) For
similar quantum kinetic models we refer to Caffish and Levermore,(3)

Escobedo et al.(11) (for Kompaneets equation), Escobedo and Mischler,(12)

Escobedo et al.(15) (for Boltzmann–Compton equation), and Escobedo(13)

(for both equations). It is also profit to see Saint-Raymond(26) and Vil-
lani (32, Chap. 5) for reviews and questions about such quantum kinetic
models.

The present paper is a continuation of refs. 20, 22: We will prove
the strong convergence to equilibrium and the single point concentration
(as t→∞) for L1 solutions f (v, t) of Eq. (BBE) with the cutoff assump-
tion (6.1) and for distributional solutions Ft for the hard sphere model.
As mentioned above, the existence of distributional solutions of Eq. (BBE)
with the hard sphere model has been proven in ref. 22 under the isotropic
condition which means that the initial data and therefore the solutions can
be represented (in terms of Riesz representation theorem) by finite positive
Borel measures on R+ := [0,∞). In this paper the isotropic condition for
distributional solutions is only used to insure the existence of conservative
solutions which are obtained by approximated L1 isotropic solutions hav-
ing the moment production property (6.5). Except this, we just need the
initial data F0 and hence the solutions Ft belong to B+

2 (R
3). Here B+

2 (R
3)
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is the class of finite positive Borel measures F on R3 satisfying

∫
R3
(1+|v|2)dF (v)<∞.

Our main idea comes from an observation that the strong conver-
gence of solution f (v, t) to the Bose–Einstein distribution 
a,b(v) =
ae−b|v|2/(1 − ae−b|v|2) (an equilibrium solution of Eq. (BBE)) can be
reduced to the strong convergence of f (v, t)/(1 +f (v, t)) to the Maxwell
distribution Ma,b(v) = ae−b|v|2 . Techniques such as entropy dissipation,
moment production, and the strong compactness of the classical Boltz-
mann gain term Q+(·, ·) can all work with that reduction. Also we obtain
Csiszár–Kullback–Pinsker type inequalities and an inverse inequality for
the BBE model, which imply that for any temperature (T �Tc or T <Tc)

‖f (t)−
a,b‖L1
2(\0)→0⇐⇒S(f (t))→S(
a,b). (1.7)

And for T �Tc,

‖f (t)−
a,b‖L1
2
→0⇐⇒S(f (t))→S(
a,b). (1.8)

We now outline the key parts which motivate our proofs for the strong
convergence and the velocity concentration. In the following the constants
C are independent of t because of the conservation laws. Let g= f

1+f , f =
f (v, t). Applying the inequality

|x−y|�√
x+y

√
	(x, y), x, y�0 (1.9)

to x=g′g′∗, y=gg∗ and using Cauchy–Schwarz inequality we find the fol-
lowing control:

∫
R3
(1+f )

∫∫
R3×S2

Bmin|g′g′
∗ −gg∗|dω dv∗ dv�C

√
Dmin(f ), (1.10)

where Bmin is a suitable “minimum” kernel constructed from B and
Dmin(f ) is the entropy dissipation corresponding to Bmin; they satisfy
Bmin �B hence Dmin(f )�D(f ), and the relevant collision integrals with
the kernel Bmin are all bounded. The role of the factor 1+f in (1.10) is to
produce a control for |f −
| in some weighted L1 topology. Here 
(v)=
M(v)/(1 − M(v)) is a general Bose–Einstein distribution with M(v) =
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ae−b|v−v0|2 and 0<a�1,0<b<∞. We observe that f,
 and g,M have a
simple but important relation:

(1−M)(f −
)= (1+f )(g−M). (1.11)

To see the connection between (1.10) and (1.11) we need the classical
Boltzmann collision operators Q±(ϕ,ψ) which are given for a general ker-
nel B by

Q+(ϕ,ψ)(v)=
∫ ∫

R3×S2
B(v−v∗,ω)ϕ(v′)ψ(v′∗)dω dv∗, (1.12)

Q−(ϕ,ψ)(v)=ϕ(v)L(ψ)(v), L(ψ)(v)=
∫

R3
A(v−v∗)ψ(v∗)dv∗,

(1.13)

A(v−v∗)=A(|v−v∗|)=
∫

S2
B(v−v∗,ω)dω. (1.14)

Now let B be replaced by Bmin. The strict positivity of M(v) implies that
L(M)(v) has a positive lower bound: L(M)(v)� c>0 from which and the
identity (1.11) we deduce

‖(1−M)(f −
)‖L1 � 1
c
‖(1+f )[gL(M)−ML(M)]‖L1

� 1
c
‖(1+f )[Q−(g, g)−Q+(g, g)]‖L1 + easy term.

The first term in the right-hand side is bounded by
√
Dmin(f ) due to

(1.10), while the “easy term” is bounded by C‖g−M‖L1 because of the
identity Q−(M,M) =Q+(M,M) for Maxwellian M. These yield a nice
control:

‖(1−M)(f −
)‖L1 �C
(
‖g−M‖L1 +

√
Dmin(f )

)
. (1.15)

On the other hand, applying the moment production property and follow-
ing Lions’ argument(18) using the compactness of {Q+(g, g)(·, t)}t�1 and
the entropy dissipation decay Dmin(f (tn))→ 0 (tn → ∞) we prove that
there exists a Maxwellian M such that ‖g(tn)−M‖L1 →0 as tn→∞. And
any such M, or equivalently 
=M/(1−M), are in fact unique, determined
by the initial state f0 with mean velocity v0 = 0, i.e. M =Ma,b, 
=
a,b.
By (1.15), this implies

‖(1−Ma,b)(f (t)−
a,b)‖L1 →0 (t→∞).
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This convergence holds also in L1
2 norm (thanks to the moment produc-

tion property) and thus by inequality |v|2 � C(1 + |v|2)(1 −Ma,b(v)) we
obtain

‖f (t)−
a,b‖L1
2(\0)→0 (t→∞). (1.16)

By (1.7) this gives the entropy convergence S(f (t))→ S(
a,b) which in
turn implies the L1

2 convergence in (1.8) for T �Tc.
On the other hand, at low temperature T <Tc , which implies a= 1,

we have

1
N

∫
R3

1,b(v)dv= (T /Tc)3/2<1,

where N = ∫R3 f0(v)dv. Applying (1.16) we then obtain the Bose–Einstein
condensation in the sense that, as t→∞,

1
N

∫
|v|�δ(t)

f (v, t)dv→1− (T /Tc)3/2, (1.17)

where δ(t)= (‖f (t)−
1,b‖L1
2(\0))

1/4 →0(t→∞).

All these results hold also for distributional solutions by taking weak
limit for approximate L1 solutions f n(v, t) and by using the monotonicity
of the entropy t �→S(f n(t)).

In ref. 20 the limit of velocity concentration was only proved for∫
v∈St f (v, t)dv where St are abstract sets satisfying mes(St ) → 0(t →

∞). This is because we used a very abstract argument: the biting-weak
convergence.(1) The present work catches the feature of the convergence
problem and reduces the single point concentration (1.17) to the strong
convergence to Bose–Einstein distribution 
1,b in the norm ‖ · ‖L1

2(\0), but
the method is not yet completely constructive because our compactness
argument could not give any explicit convergence rate. In order to obtain
an explicit convergence rate for the BBE model one may study and gen-
eralize the modern entropy dissipation techniques which deal with the
rate of convergence to Maxwellians for solutions of the classical Boltz-
mann equation (see for instance Carlen and Carvalho,(4,5) Cercignani,(8)

Desvillettes,(10) Toscani and Villani,(29) Villaini(33)). This is of course very
difficult but seems possible in terms of the Csiszár–Kullback–Pinsker type
inequalities (4.15)–(4.16), the inequality (1.15) or (3.6), and the L∞-bound
0 � g= f/(1 + f )� 1. Finally we note that our proof of the single point
concentration (1.17) is given only in the sense t → ∞. This is because
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that for L1 solutions with the strong cutoff assumption (6.1), any kind of
velocity concentration (single or non-single point) can not happen within
finite time.(20) For distributional solutions for the hard sphere model, it
is not known whether the single point concentration can occur in finite
time. To obtain such a concentration at a time tc <∞, one may consider
(as suggested by the above estimates) to prove that ‖ft −
1,b‖L1

2(\0) → 0

or equivalently S(ft )→ S(
1,b) as t → tc, where ft is the L1 part of Ft
(see Theorem 2). But this seems rather difficult though may not be com-
pletely impossible. For the Kompaneets equation, it has been proven in ref.
11 that concentrations can appear in finite time. See also ref. 26 for com-
ments about this kind of researches.

The rest of the paper is organized as follows: In Section 2 we discuss
temperatures and the Bose–Einstein distributions and give some relations
between them. In Section 3 we realize the reduction from the “Bose–
Einstein convergence” to the “Maxwellian convergence”. In Section 4 we
prove some inequalities about entropy. Section 5 is a further preparation
for Sections 6 and 7. In Section 6 we prove the strong convergence to
Bose–Einstein distributions and the velocity concentration for L1 solutions
as shown above. Finally in Section 7 we apply the results of Sections 5 and
6 to prove the strong convergence and the concentration for distributional
solutions for the hard sphere model.

2. ABOUT TEMPERATURE AND EQUILIBRIUM

For a spatially homogeneous Bose gas system governed by Eq. (BBE)
with mean velocity zero, let 0<N,E<∞ be such that mN and 1

2mE are
the total mass and kinetic energy per unit space volume, where m is the
mass of a particle. According to (9, Chap. 2) and (30, pp. 43–44), the
kinetic temperature of the gas system is defined by

T = m

2
· E
N

· 2
3kB

,

where kB>0 is the Boltzmann constant. In order to study the Bose–Einstein
condensation, we will use the critical kinetic temperature

T c= ζ(5/2)
ζ(3/2)

Tc,

where ζ(s)=∑∞
n=1 n

−s(s >1) is the Riemann–Zeta function,

Tc= m

2πkB

(
N

ζ(3/2)

)2/3

= h2

2πmkB

( N
ζ(3/2)g

)2/3

, (2.1)
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N = (m/h)3gN , h is the Planck constant, and g is a statistical weight.
Recall that the second equality in (2.1) is often used in text books for
defining Tc. See for instance Landau and Lifshitz (17, pp. 180–181, p. 36),
Parthia (24, p.180 for g = 1 (spinless)).

A Bose–Einstein distribution 
a,b in L1(R3) (with mean velocity zero)
is an equilibrium solution of Eq. (BBE). Because of the integrability, 
a,b
has the unique form


a,b(v)= ae−b|v|2

1−ae−b|v|2 , 0<a�1, 0<b<∞ (2.2)

For a Bose gas system with the numbers N,E, it is physically required
that the corresponding Bose–Einstein distribution 
a,b is the maximizer of
the following conditional maximum problem:∫

R3

a,b(v)dv=max

ã,b̃

∫
R3


ã,b̃
(v)dv, (2.3)

where ã, b̃ under the max satisfy
∫

R3


ã,b̃
(v)dv�N,

∫
R3


ã,b̃
(v)|v|2dv=E, 0<ã�1, 0<b̃<∞.

(2.4)

The coefficients of 
a,b in (2.2) can be solved uniquely through N and E.
To see this we introduce the functions

R(t)= P5/2(t)

[P3/2(t)]5/3
, Ps(t)=

∞∑
n=1

tn

ns
, t ∈ (0,1], s >1.

It has been proven in ref. 20 that the function R(t) is strictly decreasing on
t ∈ (0,1] and R(t)→∞ as t→0+. For any ã, b̃ satisfying (2.4) we compute
(see ref. 20)

Ne(ã, b̃) :=
∫

R3

a,b(v)dv=

(
1

b̃

)3/2

π3/2P3/2(ã), (2.5)

E =
∫

R3


ã,b̃
(v)|v|2dv=

(
1

b̃

)5/2 3
2
π3/2P5/2(ã). (2.6)

These imply

E

[Ne(ã, b̃)]5/3
= 3

2π
R(ã).
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By definition of T ,T c and notice that R(1)=ζ(5/2)/[ζ(3/2)]5/3 we deduce

1
N

∫
R3


ã,b̃
(v)dv= Ne(ã, b̃)

N
=
(
T

T c
· R(1)

R(ã)

)3/5

. (2.7)

Now let a, b be such that 
a,b is the Bose–Einstein distribution satisfying
(2.2)–(2.4). Then applying the relation (2.7) and noting that R(t)� R(1)
for 0<t�1, we obtain the following identities for all T /T c:

1
N

∫
R3

a,b(v)dv=

(
T

T c
· R(1)

R(a)

)3/5

=min



(
T

T c

)3/5

,1


 . (2.8)

In order to connect equilibrium statistical physics, we also represent 
a,b
in terms of the thermodynamic temperature T (>0) (refs. 9, 16, 17) by


a,b(v)= 1

eα+βm|v|2/2 −1
, β= 1

kBT

with the change

a= e−α, α�0, b=βm/2.

The two temperatures T and T have the following relation (see ref. 22):

(
T

Tc

)3/2

=
(
T

T c

)3/5(
P5/2(1)
P5/2(a)

)3/5

. (2.9)

Let R−1(τ ) with τ ∈ [R(1),∞) be the inverse function of R(t). By simple
calculation using (2.7), (2.8), and (2.9) one can easily prove the following

Proposition 1. Let 
a,b be the Bose–Einstein distribution satisfying
(2.2)–(2.4). Then (1)

T �T c ⇐⇒
∫

R3

a,b(v)dv=N and

∫
R3

|v|2
a,b(v)dv=E.

In that case,

a=R−1 (R(1)T /T c) , b=
(

1
E

· 3
2
π3/2P5/2(a)

)2/5

.
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(2)

T <T c⇐⇒a=1,
∫

R3

1,b dv<N and

∫
R3

|v|2
1,b dv=E.

In that case,

b=
(

1
E

· 3
2
π3/2P5/2(1)

)2/5

=
(

1
E

· 3
2
π3/2ζ(5/2)

)2/5

.

(3)

T �T c⇐⇒T �Tc.

T �T c or T �Tc⇐⇒ (T /Tc)
3/2 = (T /T c)3/5.

As one sees that at low kinetic temperature T <T c, there is a mass
gap:

N0 :=N −
∫

R3

1,b(v)dv=N(1− (T /T c)3/5)>0. (2.10)

In view of conservation laws, the Bose–Einstein distribution as a final
and equilibrium state of a Bose gas system should have the same mass
as that of the initial state f0 for any temperature. In this sense, the
Bose–Einstein distribution for low kinetic temperature T < T c should be
defined as 
1,b(v)+N0δ0(v) which is indeed an equilibrium solution of
Eq. (BBE) in a weak form (see ref. 22), where δ0(v) is the standard Dirac
delta function. In this paper, our study on long time behavior of solutions
of Eq. (BBE) is focused on the L1 distribution 
a,b because the the final
velocity concentration in the ratio N0/N = 1 − (T /T c)

3/5 is proved only
through the strong convergence of solutions to 
1,b. Thus for convenience
we still call 
1,b a Bose–Einstein distribution.

3. REDUCTION TO MAXWELLIAN CONVERGENCE

In this section we will use the classical collision operators Q±(ϕ,ψ)
given in (1.12)–(1.14). The main result of this section is Proposition 2. We
begin by the following
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Lemma 1. Let a collision kernel B satisfy

0�B(v−v∗,ω)�b(cos θ) cos3 θ sin3 θ, (3.1)

A0 :=4π
∫ π/2

0
sin θb(cos θ)dθ <∞. (3.2)

Then for any ϕ,ψ ∈L1(R3) satisfying 0�ϕ,ψ�1 we have

Q+(ϕ,ψ)(v)�A0 min{‖ϕ‖L1 ,‖ψ‖L1}, v∈R3. (3.3)

Proof. By Lemma 1 in ref. 21 we have

∫∫
R3×S2

b(cos θ) cos3 θ sin3 θϕ(v′)dω dv∗

=
(

4π
∫ π/2

0
sin θb(cos θ) sin3 θ dθ

)
‖ϕ‖L1 �A0‖ϕ‖L1 ,

∫∫
R3×S2

b(cos θ) cos3 θ sin3 θψ(v′
∗)dωdv∗

=
(

4π
∫ π/2

0
sin θb(cos θ) cos3 θ dθ

)
‖ψ‖L1 �A0‖ψ‖L1 .

By assumption (3.1) and the inequality 0�ϕ(v′)ψ(v′∗)�min{ϕ(v′),ψ(v′∗)},
these imply (3.3).

Proposition 2. Let B(v − v∗,ω) = b(cos θ) cos3 θ sin3 θ�(|v − v∗|)
where b(·)�0 satisfies (3.2) and

A∗
0 :=4π

∫ π/2

0
sin θb(cos θ) cos3 θ sin3 θ dθ >0 (3.4)

�(r) is non-decreasing on r ∈ [0,∞) with 0<�(r)� 1 for all r > 0. Let
0<a�1,0<b<∞, v0 ∈R3 be constants and let

M(v)=ae−b|v−v0|2 , 
(v)= M(v)

1−M(v) .
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Then for any 0�f ∈L1(R3), g= f
1+f we have

∫
R3
(1+f )

∫∫
R3×S2

B|g′g′
∗ −gg∗|dω dv∗dv�

√
3A0 ‖f ‖L1

√
D(f ) (3.5)

and

‖(1−M)(f −
)‖L1 �CM(‖f ‖L1 +‖M‖L1)
(
‖g−M‖L1 +

√
D(f )

)
, (3.6)

where D(f ) is the entropy dissipation corresponding to B(v−v∗,ω),

CM =CA0,A
∗
0,�,M

= 8(A0 +√
A0)

A∗
0

(∫
R3
ae−b|z|

2
�(|z|)dz

)−1

.

Proof. By definition of A(z) given in (1.14) we have A(z)=A(|z|)=
A∗

0�(|z|). By assumption on �, A(r)=A∗
0�(r) is non-decreasing on r ∈

[0,∞) from which and the spherical transformation we deduce a positive
lower bound of L(M): For all v∈R3,

L(M)(v) =
∫

R3
M(v∗)A(v−v∗)dv∗ =

∫
R3
ae−b|v∗−v0|2A(|v−v∗|)dv∗

=
∫

R3
ae−b|z|

2
A(|v−v0 − z|)dz� 1

2

∫
R3
ae−b|z|

2
A(

√
|v−v0|2 +|z|2)dz

� 1
2

∫
R3
ae−b|z|

2
A(|z|)dz= 1

2
A∗

0

∫
R3
ae−b|z|

2
�(|z|)dz := 1

2
CA,M >0.

Here the strict positivity CA,M > 0 is because A∗
0 > 0, a > 0 and �(|z|)> 0

for z �=0.
From this lower bounds and the identity (1.11) and using the fact that

ML(M)=Q−(M,M)=Q+(M,M) and (1+f )g=f , we have

1
2
CA,M(1−M)|f −
|= 1

2
CA,M(1+f )|g−M|

�L(M)(1+f )|g−M|= (1+f )|gL(M)−ML(M)|
� (1+f )g|L(M)−L(g)|+ (1+f )|gL(g)−ML(M)|
�f |L(M−g)|+ (1+f )|Q−(g, g)−Q+(g, g)|
+(1+f )|Q+(g, g)−Q+(M,M)|.
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Thus

1
2
CA,M‖(1−M)(f −
)‖L1 �‖f [L(M−g)]‖L1

+‖(1+f )[Q−(g, g)−Q+(g, g)]‖L1

+‖(1+f )[Q+(g, g)−Q+(M,M)]‖L1 := I1 + I2 + I3. (3.7)

By L∞ bounds A(v−v∗)�A∗
0 �A0 we have |L(M−g)(v)|�A0‖g−M‖L1

for all v∈R3. This implies

I1 =‖f [L(M−g)]‖L1 �A0‖f ‖L1‖g−M‖L1 . (3.8)

Also we have

I2 =‖(1+f )[Q−(g, g)−Q+(g, g)]‖L1

�
∫

R3
(1+f )

∫∫
R3×S2

B|g′g′
∗ −gg∗|dω dv∗ dv. (3.9)

Let 	(f ) and 	(x, y) be the functions given in (1.5) and (1.6). Let

�(f )(v, v∗,ω)= (1+f )(1+f∗)(1+f ′)(1+f ′
∗).

Applying inequality (1.9) we have

|g′g′
∗ −gg∗|�

√
g′g′∗ +gg∗

√
	(g′g′∗, gg∗).

Since

(1+f )	(g′g′
∗, gg∗)��(f )	(g′g′

∗, gg∗)=	(f )

this gives

(1+f )|g′g′
∗ −gg∗|�

√
(1+f )(g′g′∗ +gg∗)

√
	(f ).

Therefore by Cauchy–Schwarz inequality we obtain
∫

R3
(1+f )

∫∫
R3×S2

B|g′g′
∗ −gg∗|dω dv∗ dv

�
(∫∫∫

R3×R3×S2
B(1+f )(g′g′

∗ +gg∗)dω dv dv∗
)1/2

×
(∫∫∫

R3×R3×S2
B	(f )dω dv dv∗

)1/2

= (‖(1+f )[Q+(g, g)+Q−(g, g)]‖L1
)1/2√

D(f ). (3.10)
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Next we compute (using (1+f )g=f and g�f )

‖(1+f )[Q+(g, g)+Q−(g, g)]‖L1

=‖Q+(g, g)‖L1 +‖fQ+(g, g)‖L1 +‖(1+f )gL(g)‖L1

�2‖fL(f )‖L1 +‖fQ+(g, g)‖L1 .

Since A(|v− v∗|)�A0 
⇒‖fL(f )‖L1 �A0(‖f ‖L1)2 and Lemma 1 applied
to Q+(g, g) leads to

‖fQ+(g, g)‖L1 �A0‖f ‖L1‖g‖L1 �A0
(‖f ‖L1

)2
,

it follows that

(‖(1+f )[Q+(g, g)+Q−(g, g)]‖L1
)1/2 �

√
3A0‖f ‖L1

which together with (3.10) proves (3.5). Also by (3.9) and (3.5) we have

I2 �
√

3A0‖f ‖L1

√
D(f ). (3.11)

To estimate I3, we first look at the integrand. Applying Lemma 1 to the
functions 0�g,M, |g−M|�1 we obtain for all v∈R3

|Q+(g, g)(v)−Q+(M,M)(v)|
�Q+(|g−M|, g)(v)+Q+(M, |g−M|)(v)�2A0‖g−M‖L1 .

Also we have

‖Q+(g, g)−Q+(M,M)‖L1

�‖[Q+(|g−M|, g)‖L1 +‖Q+(M, |g−M|)‖L1

=‖Q−(|g−M|, g)‖L1 +‖Q−(M, |g−M|)‖L1

=‖(g−M)L(g)‖L1 +‖ML(|g−M|)‖L1

�A0(‖g‖L1 +‖M‖L1)‖g−M‖L1 .

Therefore

I3 = ‖(1+f )[Q+(g, g)−Q+(M,M)]‖L1

= ‖Q+(g, g)−Q+(M,M)‖L1 +‖f [Q+(g, g)−Q+(M,M)]‖L1

� A0(‖g‖L1 +‖M‖L1)‖g−M‖L1 +‖f ‖L1 2A0‖g−M‖L1

� A0
(
3‖f ‖L1 +‖M‖L1

)‖g−M‖L1 . (3.12)
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Combining (3.8), (3.11) and (3.12) leads to

1
2
CA,M‖(1−M)(f −
)‖L1 � I1 + I2 + I3

�A0
(
4‖f ‖L1 +‖M‖L1

)‖g−M‖L1 +
√

3A0‖f ‖L1

√
D(f )

�4(A0 +
√
A0)(‖f ‖L1 +‖M‖L1)

(
‖g−M‖L1 +

√
D(f )

)
.

This proves (3.6) by definition of CA,M .

4. SOME INEQUALITIES ABOUT ENTROPY

Recalling (1.4) the entropy S(f ) for 0�f ∈L1
2(R

3) can be written

S(f )=
∫

R3
s(f (v))dv,

where

s(y)= (1+y) log(1+y)−y log y, y ∈ [0,∞) (4.1)

which is increasing and concave on [0,∞):

s′(y)= log(1+ 1
y
)>0, s′′(y)=− 1

y(1+y) <0, y >0. (4.2)

Lemma 2. (1) Let f, g∈L1
2(R

3). Then

0�f �g
⇒0� s(f )� s(g)
⇒0�S(f )�S(g). (4.3)

(2) If 0�f ∈L1
2(R

3), then

‖s(f )‖L2 �2
√‖f ‖L1 , ‖s(f )‖L1

1
�4‖f ‖L1

2
+C0, (4.4)

where C0 is an absolute constant.
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Proof. (4.3) is obvious. To prove (4.4) we write

s(f (v))= log(1+f (v))+f (v) log(1+1/f (v)).

Using the inequality log(1+y)�√
y for y�0, we get

s(f (v))�2
√
f (v) ∀v∈R3.

This gives the first inequality in (4.4). Next for any v, by considering
f (v)� e−|v| and f (v)� e−|v| we obtain

s(f (v))�2f (v)(1+|v|)+2e−|v|/2 ∀v∈R3.

Multiplying (1+|v|2)1/2 to this inequality and taking integration gives the
second inequality in (4.4).

Let F ∈B+
2 (R

3). By Lebesgue–Radon–Nikodym theorem (see e.g. ref.
25), there exist a unique 0�f ∈L1

2(R
3), a unique µ∈B+

2 (R
3), and a Borel

set Z⊂R3 satisfying mes(Z)=0,µ(R3\Z)=0, such that dF(v)=f (v)dv+
dµ(v). We call µ the singular part of F .

Lemma 3. Let 0 � f n ∈ L1
2(R

3) satisfy supn�1 ‖f n‖L1
2
< ∞ and

assume that there is an F ∈B+
2 (R

3) such that

lim
n→∞

∫
R3
ϕ(v)f n(v)dv=

∫
R3
ϕ(v)dF (v) ∀ϕ ∈Cc(R3). (4.5)

Let

dF(v)=f (v)dv+dµ(v),

where 0�f ∈L1
2(R

3) and µ∈B+
2 (R

3) is the singular part of F . Then

lim sup
n→∞

S(f n)�S(f ) (4.6)
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Proof. Introduce function space (for constant s�0)

C∩L∞
−s(R

3)={ϕ ∈C(R3) | ‖ϕ‖L∞−s := sup
v∈R3

|ϕ(v)|(1+|v|2)−s/2<∞} .
(4.7)

The L1
2 boundedness of {f n} implies that the convergence in (4.5) holds

for all ϕ ∈C ∩L∞
−1(R

3). By applying convolution it is easy to construct
functions 0 � fδ ∈ C(R3) ∩ L1

2(R
3) such that ‖fδ − f ‖L1

1
→ 0 as δ→ 0+.

Since µ is the singular part of F , there exists a Borel set Z⊂R3 such that
mes(Z)= 0 and µ(R3 \Z)= 0. For any η> 0, choose an open set Oη ⊃Z
such that mes(Oη)<η. By considering

1R3\Oη
(v)�ψj (v) := exp(−j dist(v,R3\Oη) ) ∀v∈R3 , ∀ j �1

it is easily proven that for any 0�ϕ ∈C∩L∞
−1(R

3)

lim sup
n→∞

∫
R3\Oη

ϕ(v)f n(v)dv�
∫

R3\Oη

ϕ(v)f (v)dv . (4.8)

Now we will use the following functions

ϕε(v)= εe−|v| , �δ,ε= s′(fδ +ϕε)= log
(

1+ 1
fδ +ϕε

)

where 0 < ε � 1. It is easily seen that 0 � �δ,ε ∈ C ∩ L∞
−1(R

3) and
supδ>0 ‖�δ,ε‖L∞

−1
�Cε=1+ log(2/ε)<∞. By concavity s′′(y)<0 we have

s(f n) � s(fδ +ϕε)+ s′(fδ +ϕε)(f n−fδ −ϕε)
� s(fδ +ϕε)+�δ,ε(f n−f )+�δ,ε(f −fδ) ,

s(fδ +ϕε) � s(f +ϕε)+ log
(

1+ 1
f +ϕε

)
(fδ −f )

� s(f +ϕε)+Cε(1+|v|2)1/2|fδ −f | .

These imply s(f n)� s(f +ϕε)+�δ,ε(f n−f )+2Cε(1+|v|2)1/2|fδ−f | and
hence

S(f n) =
∫

Oη

s(f n)dv+
∫

R3\Oη

s(f n)dv

� λ(η)+S(f +ϕε)+
∫

R3\Oη

�δ,ε(f
n−f )dv+2Cε‖fδ −f ‖L1

1
,
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where

λ(η)= sup
n�1

∫
Oη

s(f n)dv→0 ( η→0 ) (4.9)

which is due to the L1 weak compactness of {s(f n)} (see Lemma 2). Thus
first letting n→∞ (using (4.8)) and then letting η→ 0+ (using (4.9)) we
obtain

lim sup
n→∞

S(f n)�S(f +ϕε)+2Cε‖fδ −f ‖L1
1
.

Further letting δ→0+ gives

lim sup
n→∞

S(f n)�S(f +ϕε) (0<ε�1 ). (4.10)

Finally since 0� s(f +ϕε)� s(f +ϕ1)∈L1(R3), it follows from dominated
convergence theorem that S(f +ϕε)→S(f ) as ε→0+. Thus in (4.10) let-
ting ε→0+ leads to (4.6) and the proof is complete.

The last lemma deals with the Csiszár–Kullback–Pinsker type inequal-
ities (see (4.15), (4.16)) and an inverse inequality (see (4.14)).

Lemma 4. Let 0�f ∈L1
2(R

3) and 
(v)=ae−b|v|2/(1−ae−b|v|2) with
0<a�1, 0<b<∞. Then (1)

‖f −
‖L1 �‖f ‖L1 −‖
‖L1 +Cb
(
‖f −
‖L1

2(\0)

)1/3
. (4.11)

(2) If
∫

R3
|v|2f (v)dv�

∫
R3

|v|2
(v)dv (4.12)

and either a=1 or
∫

R3
f (v)dv�

∫
R3

(v)dv , (4.13)

then

0�S(
)−S(f )�Cb
(
‖f −
‖L1

2(\0)

)1/2
, (4.14)

‖f −
‖L1
2(\0)�Cb [S(
)−S(f )]1/2 . (4.15)
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(3) If (4.12) and (4.13) are both satisfied, then

‖f −
‖L1
2
�Cb [S(
)−S(f )]1/6 . (4.16)

Here Cb=C0
(
(1/b)1/4 + (1/b)9/4) and C0 is an absolute constant.

Proof. Part (1) is based on the identity (using (y)+ =max{y , 0})

|f −
|=f −
+2(
−f )+ (4.17)

and a simple estimate (because 0<a�1)


(v)= 1
1
a
eb|v|2 −1

� 1

eb|v|2 −1
� 1
b|v|2 (4.18)

from which we deduce for any δ>0

∫
R3
(
−f )+dv �

∫
|v|�δ


dv+ 1
δ2

∫
|v|>δ

|v|2(
−f )+dv

� 4π
b
δ+ 1

δ2
‖f −
‖L1

2(\0) .

Minimizing the right hand side with respect to δ>0 gives

∫
R3
(
−f )+dv�C0(1/b)

2/3
(
‖f −
‖L1

2(\0)

)1/3
(4.19)

and (4.11) follows from (4.17) and (4.19).
To prove Part (2) we first prove (4.15)–(4.16). For any given v∈R3 we

denote f =f (v),
=
(v). Let

�τ (f,
)= [
+ τ(f −
)][1+
+ τ(f −
)] , τ ∈ [0,1] .

Then by (4.1)–(4.2) and Taylor’s formula we have

0�
∫ 1

0

(1− τ)(f −
)2
�τ (f,
)

dτ = s(
)− s(f )+ s′(
)(f −
) . (4.20)

Since

s′(
)(f −
)= (log (1/a))(f −
)+b|v|2(f −
)
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and 0<a�1, b>0, the assumption in Part (2) implies that

∫
R3
s′(
)(f −
)dv�0

and thus by integrating (4.20) we obtain

0�
∫

R3

∫ 1

0

(1− τ)(f −
)2
�τ (f,
)

dτ dv�S(
)−S(f ) . (4.21)

Next by assumption (4.12) and the identity (4.17) we have

‖f −
‖L1
2(\0)�2

∫
R3

|v|2(
−f )+dv . (4.22)

Note that if v∈R3 satisfies 
(v)>f (v), then 0<�τ (f,
)�
(1+
) for
all τ ∈ (0,1). From this we deduce (by Cauchy–Schwarz inequality)

(
−f )+ = 2
∫ 1

0

√
1− τ(
−f )+√
�τ (f,
)

·
√
(1− τ)�τ (f,
) dτ

� 2

√∫ 1

0

(1− τ)(
−f )2
�τ (f,
)

dτ ·
√

1
2

(1+
) .

Multiplying |v|2 to this inequality and applying Cauchy–Schwarz inequal-
ity again we obtain (using (4.21))

∫
R3

|v|2(
−f )+dv�
√

2
√
S(
)−S(f )

√∫
R3

|v|4
(1+
)dv . (4.23)

Applying inequalities in (4.18) we have

|v|4
(v)(1+
(v))� 1

eb|v|2 −1
( |v|4 + |v|2

b
)

from which we deduce (with an absolute constant C0)

∫
R3

|v|4
(1+
)dv�C0

(
(1/b)7/2 + (1/b)5/2

)
.
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Therefore by (4.22) and (4.23) we obtain (with a different C0)

‖f −
‖L1
2(\0)�C0

(
(1/b)7/4 + (1/b)5/4

)
[S(
)−S(f )]1/2 . (4.24)

This proves (4.15). Next assume that (4.12) and (4.13) are both satisfied.
Then by (4.17) and (4.19) we have

‖f −
‖L1 �C0(1/b)
2/3
(
‖f −
‖L1

2(\0)

)1/3
.

This together with

‖f −
‖L1
2(\0)�2‖
‖L1

2(\0)�2
∫

R3

|v|2
eb|v|2 −1

dv=C0(1/b)
5/2

gives

‖f −
‖L1
2
=‖f −
‖L1 +‖f −
‖L1

2(\0)

�C0
(
(1/b)2/3 + (1/b)5/3) (‖f −
‖L1

2(\0)

)1/3
(4.25)

and thus (4.16) follows from (4.25) and (4.24).
Finally we prove the inverse inequality (4.14). By monotonicity (4.3)

and the inequality 0 � s′(y)= log(1 + 1/y)� 4y−1/4 and noting that f � 0
we have

S(
)−S(f ) =
∫

R3
[s(
)− s(f )]dv�

∫

>f

[s(
)− s(f )]dv

=
∫

>f

∫ 1

0
log

(
1+ 1

f + τ(
−f )
)
(
−f )dτdv

� 4
∫

>f

∫ 1

0
τ−1/4(
−f )3/4dτ dv

= 16
3

∫
R3

[(
−f )+]3/4dv . (4.26)

For any δ>0, applying the inequality 
(v)� 1
b|v|2 and the Hölder inequal-

ity we have
∫

R3
[(
−f )+]3/4dv

�
∫

|v|�δ

3/4dv+

∫
|v|>δ

|v|−3/2 · |v|3/2[(
−f )+]3/4dv



Boltzmann Equation for Bose–Einstein Particles 1049

�
∫

|v|�δ

(
1

b|v|2
)3/4

dv+
(∫

|v|>δ
|v|−6dv

)1/4(∫
|v|>δ

|v|2(
−f )+dv
)3/4

�C0b
−3/4δ3/2 +C0δ

−3/4
(
‖f −
‖L1

2(\0)

)3/4
.

Minimizing the right-hand with respect to δ>0 gives

∫
R3

[(
−f )+]3/4dv�C0 (1/b)
1/4
(
‖f −
‖L1

2(\0)

)1/2

which together with (4.26) gives (4.14) and the proof is complete.

5. STRONG CONVERGENCE OF L1-SEQUENCE

Proposition 3. Let B(v − v∗,ω) be given in Proposition 2 and
assume further that b(τ)>0 for τ ∈ (0,1). Let D(f ) be the entropy dissipa-
tion corresponding to B(v−v∗,ω). Let {fn}∞n=1 be non-negative functions
in L1

4(R
3) satisfying

sup
n�1

‖fn‖L1
4
<∞ , inf

n�1
S(fn)>0 , (5.1)

lim
n→∞

∫
R3
fn(v)(1, v, |v|2)dv= (N,0,E) , lim

n→∞D(fn)=0, (5.2)

where 0<N,E <∞. Let 
a,b (with 0< a � 1,0< b <∞) be the unique
Bose–Einstein distribution determined by (N,E). Then (whatever T � T c
or T <T c)

lim
n→∞‖fn−
a,b‖L1

2(\0)=0 , lim
n→∞S(fn)=S(
a,b) . (5.3)

Moreover if T �T c, then

lim
n→∞‖fn−
a,b‖L1

2
=0 . (5.4)

Proof. Step 1. We prove that if ψj ,ψ∞ are non-negative functions
in L1

2(R
3) satisfying supj�1 ‖ψj‖L1

2
<∞ and

ψj (v)→ψ∞(v) (j→∞) a.e. v∈R3 , (5.5)
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then

S(ψj )→S(ψ∞) ( j→∞ ) . (5.6)

In fact Lemma 2 and the boundedness of {ψj } in L1
2(R

3) imply that
{s(ψj )} is weakly compact2 in L1(R3). Thus the pointwise convergence
(5.5) implies (5.6).

Step 2. Let gn = fn/(1 + fn). We prove that {Q+(gn, gn)}∞n=1 is com-
pact in L1(R3). It suffices to prove that

sup
n�1

‖Q+(gn, gn)‖L1
2
<∞ , (5.7)

sup
n�1

‖Q+(gn, gn)(·+h)−Q+(gn, gn)‖L1 →0 as h→0 . (5.8)

First of all we have by (5.1) and 0�gn�fn that

sup
n�1

‖gn‖L1
4
� sup
n�1

‖fn‖L1
4
<∞ . (5.9)

By assumption on B we have A(|z|) = ∫
S2 B(z,ω)dω � A∗

0 which gives
L(gn)(v)�A∗

0‖gn‖L1 for all v∈R3 so that

‖Q+(gn, gn)‖L1
2
=‖Q−(gn, gn)‖L1

2
=‖gnL(gn)‖L1

2
�A∗

0(‖gn‖L1
2
)2

and thus (5.7) follows from (5.9).
The proof of (5.8) can be reduced to prove the boundedness of

{Q+(gn, gn)} in the Sobolev space H 1(R3) by assuming that the ker-
nel B satisfies some smoothness conditions (see Lions,(18) Bouchut and
Desvillttes,(2) Wennebrg(34,35)). And then apply a smooth approximation
to the original B. Here we shall use a weaker but enough estimate from
ref. 19 without the smoothness assumption: By A(|z|)�A∗

0 we have

0<
∫ ∞

0

r2[A(r)]2

(1+ r2)2
dr� (A∗

0)
2
∫ ∞

0

r2

(1+ r2)2
dr <∞

which implies that there is a measurable function �B(ξ) on R3 that
depends only on the kernel B, satisfying �B(ξ)� c > 0 and �B(ξ)→ ∞
as |ξ |→∞, such that
∫

R3
�B(ξ)|F(Q+(gn, gn))(ξ)|2dξ �

∫∫
R3×R3

g2
n(v)g

2
n(v∗)(1+|v−v∗|2)2dv dv∗.

2In this paper, the “compact” should be understood as “relatively compact”.
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The right-hand side of this inequality is less than 4 (‖gn‖L1
4
)2 (because

0�gn�1). Here F denotes the Fourier form. Therefore by (5.9) we obtain

sup
n�1

∫
R3
�B(ξ)|F(Q+(gn, gn))(ξ)|2dξ <∞ .

This implies that

�(h) := sup
n�1

‖Q+(gn, gn)(·+h)−Q+(gn, gn)‖2
L2 →0 as h→0 .

Now for all |h|�1 and all 2�R<∞

‖Q+(gn, gn)(·+h)−Q+(gn, gn)‖L1

�
∫

|v|�R
|Q+(gn, gn)(v+h)−Q+(gn, gn)(v)|dv

+
∫

|v|>R
|Q+(gn, gn)(v+h)−Q+(gn, gn)(v)|dv

�3R3/2
√
�(h)+ 8

R2

∫
|v|>R/2

|v|2|Q+(gn, gn)(v)|dv .

Thus by (5.7)

sup
n�1

‖Q+(gn, gn)(·+h)−Q+(gn, gn)‖L1 �3R3/2
√
�(h)+ C

R2
,

where C<∞ is independent of (R,h). This implies (5.8).
Step 3. Let Ma,b=
a,b/(1+
a,b). In this step we prove that if

lim
n→∞‖(1−Ma,b)(fn−
a,b)‖L1 =0 (5.10)

then (5.3) and (5.4) hold.
Suppose (5.10) holds. Then the L1

4-boundedness of {fn} implies that
(5.10) holds also in L1

2(R
3):

lim
n→∞‖(1−Ma,b)(fn−
a,b)‖L1

2
=0 . (5.11)

Next by 0<a�1 we have

1−Ma,b(v)�1− e−b|v|2 � b|v|2
1+b|v|2
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which implies (with C= (1+b)/b)

|v|2 �C(1+|v|2)(1−Ma,b(v)) (5.12)

and so as n→∞

‖fn−
a,b‖L1
2(\0)�C‖(1−Ma,b)(fn−
a,b)‖L1

2
→0 . (5.13)

Choose a subsequence {nk}∞k=1 ⊂{n} such that

lim
k→∞

|S(fnk )−S(
a,b)|= lim sup
n→∞

|S(fn)−S(
a,b)| . (5.14)

By (5.13) there exists a subsequence {nkj }∞j=1 of {nk}∞k=1 such that fnkj (v)→

a,b(v) (j→∞) a.e. v∈R3 so that by Step 1 we have S(fnkj )→S(
a,b) as
j→∞ . This together with (5.14) implies lim supn→∞ |S(fn)−S(
a,b)|=0
and (5.3) is proven.

Now assume that T �T c. Then

lim
n→∞‖fn‖L1 =N =‖
a,b‖L1

and thus applying (4.11) in Part (1) of Lemma 4 together with (5.13) we
obtain (5.4).

Step 4. We now prove that (5.10) holds true. Let {nj }∞j=1 be a subse-
quence of {n} such that

lim
j→∞

‖(1−Ma,b)(fnj −
a,b)‖L1= lim sup
n→∞

‖(1−Ma,b)(fn−
a,b)‖L1.

(5.15)

Recall that

gnj (v)=
fnj (v)

1+fnj (v)
.

We shall prove that a subsequence of {gnj }∞j=1 converges to a Maxwell-
ian. First of all the L∞ bounds 0 � gnj � 1 and (5.9) imply that {gnj }∞j=1
is weakly compact in L1(R3). So there exist a subsequence of {nj }∞j=1, still
denote as {nj }∞j=1, and a function g∞ ∈L1(R3) such that

∫
R3
ψgnj dv→

∫
R3
ψg∞ dv ( j→∞ ) ∀ψ ∈L∞(R3) . (5.16)
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This implies that, after modification on a null set, 0 � g∞(v)� 1 for all
v ∈ R3. In the following, further extraction of subsequence of {gnj }∞j=1
may be needed. For notational convenience (without loss of generality)
we denote {gnj }∞j=1 to be various convergent subsequence of {gnj }∞j=1.
We claim that

∫
R3 g∞dv > 0. Otherwise,

∫
R3 g∞dv= 0, then (5.16) implies

limj→∞ ‖gnj ‖L1 = 0 so that gnj (v)→ 0( j → ∞ ) a.e. v ∈ R3 . This implies
that

fnj (v)=
gnj (v)

1−gnj (v)
→0 ( j→∞ ) a.e. v∈R3 .

By Step 1, this implies limj→∞ S(fnj ) = S(0) = 0 which contradicts the
assumption infn�1 S(fn)>0. Therefore

∫
R3 g∞dv>0. By positivity A(z)>0

for all z �=0, this implies that L(g∞)(v)>0 for all v∈R3. Next by L1-com-
pactness of {Q+(gn, gn)} there exists a function 0�G∈L1(R3), such that

lim
j→∞

‖Q+(gnj , gnj )−G‖L1 =0

which implies that

lim
j→∞

Q+(gnj , gnj )(v)=G(v) a.e. v∈R3 .

Let us write (recalling (1.13))

gnj (v)=
Q−(gnj , gnj )(v)
L(gnj )(v)

= Q+(gnj , gnj )(v)
L(gnj )(v)

− Q(gnj , gnj )(v)

L(gnj )(v)
. (5.17)

Since A(z)�A∗
0 on R3, it follows from (5.16) that for all v∈R3

lim
j→∞

L(gnj )(v)= lim
j→∞

∫
R3
gnj (v∗)A(v−v∗)dv∗ =L(g∞)(v)>0 .

On the other hand, the assumption limn→∞D(fn)= 0 and Proposition 2
imply that
∫∫∫

R3×R3×S2
B |g′

ngn
′
∗ −gngn∗|dω dv∗ dv�

√
3A0 ‖fn‖L1

√
D(fn)→0 (5.18)

as n→∞. This implies limn→∞ ‖Q(gn, gn)‖L1 =0 and thus

Q(gnj , gnj )(v)→0 ( j→∞ ) a.e. v∈R3 .
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Therefore from (5.17) we obtain the pointwise convergence:

gnj (v)→
G(v)

L(g∞)(v)
=: g̃∞(v) ( j→∞ ) a.e. v∈R3 .

Since {gnj }∞j=1 is weakly compact in L1(R3), it follows that limj→∞ ‖gnj −
g̃∞‖L1 =0. By (5.16), this implies g̃∞ =g∞ a.e. on R3 and so limj→∞ ‖gnj −
g∞‖L1 =0. Now applying Fatou’s Lemma and (5.18) we have

∫∫∫
R3×R3×S2

B |g′
∞g∞′

∗ −g∞g∞∗|dω dv dv∗

� lim inf
j→∞

∫∫∫
R3×R3×S2

B |gnj ′gnj
′
∗ −gnj gnj ∗|dω dv dv∗ =0 .

Since B(z,ω)> 0 for a.e. (z,ω)∈ R3 ×S2 and 0 � g∞ ∈L1(R3), it follows
that g′∞g∞′∗ = g∞g∞∗ for a.e. (v, v∗,ω)∈ R3 ×R3 ×S2 and hence g∞ is a
Maxwellian:

g∞(v)=M(v)= ãe−b̃|v−v0|2 a.e. v∈R3 .

Therefore

‖gnj −M‖L1 →0 as j→∞ . (5.19)

Since 0 � g∞ � 1 and
∫

R3 g∞dv > 0, these imply that 0< ã� 1 ,0< b̃<∞.
Let


(v)= M(v)

1−M(v) = ãe−b̃|v−v0|2

1− ãe−b̃|v−v0|2
.

Then by Proposition 2 and (5.19) we have

‖(1−M)(fnj −
)‖L1 �C
(
‖gnj −M‖L1 +

√
D(fnj )

)
→0 ( j→∞ ) .

(5.20)

This convergence together with the L1
4 bounds supn�1 ‖fn‖L1

4
<∞ imply

‖(1−M)(fnj −
)‖L1
2
→0 ( j→∞ ) . (5.21)
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We need to prove 
=
a,b, i.e. v0 =0, ã=a, and b̃=b. If this is done,
then (5.15) gives (5.10) and the proof of the proposition is complete by
Step 3. We first prove v0 =0. As shown in (5.12) we have (with C denoting
different constants) |v− v0|2 �C(1 + |v− v0|2)(1 −M(v))�C(1 + |v|2)(1 −
M(v)). This implies

∫
R3

|v−v0|2|fnj (v)−
(v)|dv�C‖(1−M)(fnj −
)‖L1
2
→0 (5.22)

as j→∞. By Cauchy–Schwarz inequality, this gives that as j→∞
∣∣∣∣
∫

R3
(v−v0)[fnj (v)−
(v)]dv

∣∣∣∣�C
(∫

R3
|v−v0|2|fnj (v)−
(v)|dv

)1/2

→0 .

Since
∫

R3(v − v0)
(v)dv = 0,
∫

R3 vfn(v)dv→ 0,
∫

R3 fn(v)dv→N > 0 (n→
∞), it follows that v0 =0. Therefore we can write


(v)=

ã,b̃
(v), M(v)=M

ã,b̃
(v) .

Applying (5.22) again and using Fatou Lemma we obtain

∫
R3

|v|2

ã,b̃
(v)dv = lim

j→∞

∫
R3

|v|2fnj (v)dv=E , (5.23)
∫

R3


ã,b̃
(v)dv � lim

j→∞

∫
R3
fnj (v)dv=N . (5.24)

To prove ã=a and b̃=b we first consider the case 0<ã<1. For this case
we have 1−M

ã,b̃
(v)�1− ã >0 for all v∈R3 and thus

‖fnj −

ã,b̃

‖L1
2
� 1

1− ã ‖(1−M
ã,b̃
)(fnj −


ã,b̃
)‖L1

2
→0 ( j→∞ ) .

This implies
∫

R3 
ã,b̃(v)dv = N which together with (5.23) implies that


ã,b̃

arrives at the conditional maximum (2.3) and hence by definition and
the uniqueness of 
a,b we conclude that ã=a and b̃=b .

Next suppose ã= 1. If
∫

R3 
1,b̃(v)dv=N , then, as shown above, ã=
a(=1) and b̃=b. If

∫
R3 
1,b̃(v)dv �=N , then (5.24) implies

∫
R3 
1,b̃(v)dv<

N so that by (2.7) (with ã=1) we have

1>
1
N

∫
R3

1,b̃(v)dv= (T /T c)3/5
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i.e. T <T c which implies by Proposition 1 that a= 1 and therefore b̃= b
because from (5.23), (2.6) (with ã= 1) and Proposition 1 one sees that b̃
and b have the same expression in terms of E.

We have proved that 
 = 
a,b, M =Ma,b. Therefore by (5.20) we
obtain

lim
j→∞

‖(1−Ma,b)(fnj −
a,b)‖L1 =0

which together with (5.15) implies (5.10) and the proof is complete.

6. STRONG CONVERGENCE OF L1-SOLUTIONS

In this section we consider hard potentials with certain cutoffs that
insure the global existence, uniqueness and moment production property
of conservative L1 isotropic solutions of Eq. (BBE).(20) We will prove that
the convergence of the solutions (as t→∞) is uniform with respect to the
cutoff constants.

Theorem 1. Let B(v−v∗,ω)=b(cos θ)|v−v∗|γ where 0<γ �1 and
b(·)�0 is a bounded Borel function on [0,1] satisfying b(τ)>0 for all τ ∈
(0,1). Given any set K⊂ [1,∞). For any K ∈K, let

BK(v−v∗,ω)=min{B(v−v∗,ω) , K|v−v∗|3 cos2 θ sin θ } (6.1)

and let {f K0 }K∈K ⊂ L1
2(R

3) be a family of non-negative isotropic initial
data satisfying

infK∈K S(f K0 )>0 , (6.2)∫
R3
(1, v, |v|2)f K0 (v)dv= (N,0,E) ∀K ∈K, (6.3)

where N,E> 0 are constants independent of K. For every K ∈K, let 0 �
fK ∈C1([0,∞);L1(R3)) be the unique conservative isotropic solution of
Eq. (BBE) with the kernel BK(v−v∗,ω) satisfying f K |t=0 =f K0 . Let T ,T c
and 
a,b be the kinetic temperatures and the unique Bose–Einstein distri-
bution determined by N , E. Then

(I) For all K ∈K

S(f K(t))=S(f K0 )+
1
4

∫ t

0
DK(f

K(τ))dτ ∀ t�0 , (6.4)

sup
K∈K

‖f K(t)‖L1
s
�Cs(1+1/t)(s−2)/γ ∀ t >0 , ∀ s >2, (6.5)
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where DK(f ) is the entropy dissipation corresponding to BK(v − v∗,ω),
the constants Cs depend only on b(·), γ,N,E and s.

(II.1) For any temperature ( T �T c or T <T c ) and for all K ∈K,

0�S(
a,b)−S(f K(t))�Cb
(
‖f K(t)−
a,b‖L1

2(\0)

)1/2 ∀ t�0 , (6.6)

‖fK(t)−
a,b‖L1
2(\0)�Cb

[
S(
a,b)−S(f K(t))

]1/2 ∀ t�0 , (6.7)

and

sup
K∈K

[S(
a,b)−S(f K(t))]→0 ( t→∞ ) . (6.8)

(II.2) If T �T c , then for all K ∈K
‖f K(t)−
a,b‖L1

2
�Cb

[
S(
a,b)−S(f K(t))

]1/6 ∀ t�0 . (6.9)

Here, in (II.1)–(II.2), Cb =C0((1/b)1/4 + (1/b)9/4) is the constant given in
Lemma 4. In particular, Cb is independent of K.

(II.3) If T <T c , then there exists 0<t0<∞ which is independent of K
such that

1− (T /T c)3/5 +Cδ(t)� 1
N

∫
|v|�δ(t)

f K(v, t)dv�1− (T /T c)3/5 ∀ t� t0
(6.10)

where C=5π/(bN) and

δ(t) := sup
K∈K

(
‖f K(t)−
1,b‖L1

2(\0)

)1/4 →0 ( t→∞ ) .

Proof. For Part (I), the entropy identity (6.4) is a result of ref. 20.
The moment production (6.5) has been proven in the proof of Theorem
4 in ref. 22. It should be noted that in ref. 22 we also required that b(·)
is continuous and b(0)= 0, but these conditions are only used to prove a
weak stability of {f K}K∈K. In fact from the proof of Theorem 4 in ref. 22
one can easily check that at least for the cutoff kernels BK(v− v∗,ω) the
present conditions on b(·) are enough to obtain the moment production
property (6.5). Of course for the hard sphere model, i.e. for b(τ)=const.τ
and γ =1, all requirements are satisfied.
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For Part (II), we first prove the entropy inequalities (6.6), (6.7) and
(6.9). By definition of 
a,b and that f K conserve the mass and energy, we
have for any K ∈K

∫
R3

|v|2f K(v, t)dv=E=
∫

R3
|v|2
a,b(v)dv ∀ t�0 .

Also by Proposition 1 one sees that the inequality T <T c implies a= 1,
while the inequality T �T c implies

∫
R3
f K(v, t)dv=N =

∫
R3

a,b(v)dv ∀ t�0 .

Therefore the estimates (4.14)–(4.16) in Lemma 4 apply to deduce the
entropy inequalities (6.6), (6.7) and (6.9).

Now we will use Proposition 3 to prove the uniform entropy conver-
gence (6.8). Consider the "minimal" kernel: b(cos θ)=min{b(cos θ) , 1},

Bmin(v−v∗,ω)=b(cos θ) cos3 θ sin3 θ min{|v−v∗|3 , 1} .

Recalling (6.1) and K⊂ [1,∞) we have

Bmin(v−v∗,ω)�BK(v−v∗,ω) ∀K ∈K . (6.11)

Let Dmin(f ) and DK(f ) be the entropy dissipations corresponding to the
kernels Bmin(v− v∗,ω) and BK(v− v∗,ω) respectively. By (6.11) we have
Dmin(f )�DK(f ) for f � 0. To prove (6.8), we choose a sequence {tn} ⊂
[2,∞) satisfying tn→∞ ( n→∞ ) and a sequence {Kn}⊂K such that

lim
n→∞[S(
a,b)−S(f Kn(tn))]= lim sup

t→∞
sup
K∈K

[S(
a,b)−S(f K(t))] . (6.12)

By entropy identity (6.4) we have (because 0�S(f K(t))�S(
a,b))

2
tn

∫ tn

tn/2
DKn(f

Kn(τ ))dτ = 8
tn

(
S(f Kn(tn))−S(f Kn(tn/2))

)
� 8S(
a,b)

tn
.

This implies that there exist τn ∈ [tn/2 , tn] (n=1,2, ...) such that

DKn(f
Kn(τn))�

8S(
a,b)
tn

→0 ( n→∞ ).
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Since 0�Dmin(f
K(t))�DK(f K(t)), it follows that

Dmin(f
Kn(τn))→0 ( n→∞ ) .

Also, by conservation laws, moment production (6.5), S(f K(t))� S(f K0 ),
and (6.2)–(6.3) we have

∫
R3
(1, v, |v|2)f Kn(v, τn)dv= (N,0,E) , n=1,2,3, . . . ,

sup
n�1

‖f Kn(τn)‖L1
4
<∞ , inf

n�1
S(f Kn(τn))� inf

K∈K
S(f K0 )>0 .

Therefore applying Proposition 3 to the kernel Bmin with the entropy
dissipation Dmin and the functions fn(v) = f Kn(v, τn), and noting that
S(f Kn(τn))�S(f Kn(tn))�S(
a,b) we obtain

0�S(
a,b)−S(f Kn(tn))�S(
a,b)−S(f Kn(τn))→0 ( n→∞ )

and therefore (6.8) follows from (6.12). This proves (II.1)–(II.2).
Finally we prove (II.3). Suppose T <T c . Then a= 1 and

∫
R3 
1,b(v)

dv<N which implies that (δ(t))4 = supK∈K ‖f K(t)−
1,b‖L1
2(\0) >0 for all

t�0 . Let N0 =N − ∫R3 
1,bdv. We compute

∫
|v|�δ(t)

f K(v, t)dv=N0 + IK(t) , (6.13)

IK(t)=
∫

|v|�δ(t)

1,b(v)dv+

∫
|v|>δ(t)

[
1,b(v)−f K(v, t)]dv , (6.14)

∣∣∣∣
∫

|v|>δ(t)
[
1,b(v)−f K(v, t)]dv

∣∣∣∣� 1
δ2(t)

‖f K(t)−
1,b‖L1
2(\0)� δ2(t).

(6.15)

Since δ(t)→0, there exists 0<t0<∞ such that δ(t)<min{√1/b , π/b} for
all t� t0. By inequality 1+x�ex�1+2x for 0�x�1 we have for all t� t0

2π
b
δ(t)�

∫
|v|�δ(t)


1,b(v)dv=4π
∫ δ(t)

0

r2

ebr
2 −1

dr� 4π
b
δ(t) .

By (6.14)–(6.15), the left-hand side inequality gives for all K ∈K

IK(t)�
2π
b
δ(t)− δ2(t)= δ(t)

(
2π
b

− δ(t)
)
>0 ∀ t� t0 ,
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while the right-hand side inequality gives

IK(t)�
4π
b
δ(t)+ δ2(t)� 5π

b
δ(t) .

Combining these with (6.13) and recalling that N0 =N(1− (T /T c)3/5) (see
(2.10)) we obtain (6.10).

Remark. Theorem 1 implies that at low temperature T < T c the
solutions f K(v, t) can be split as a sum of “regular” parts and “singular”
parts: f K(v, t)=f Kr (v, t)+f Ks (v, t) where

f Kr (v, t)=f K(v, t)1{|v|>δ(t)} , f Ks (v, t)=f K(v, t)1{|v|�δ(t)} .

As time goes to infinity, the “regular” parts f Kr (v, t) converge in L1(R3)

to 
1,b uniformly in K, while the “singular” parts f Ks (v, t) converge uni-
formly to a unique Dirac delta function. That is,

limt→∞ supK∈K
∫

R3
|f Kr (v, t)−
1,b(v)|dv=0 ,

limt→∞ supK∈K

∣∣∣∣
∫

R3
f Ks (v, t)ϕ(v)dv−N0ϕ(0)

∣∣∣∣=0 ∀ϕ ∈C∩L∞(R3).

7. STRONG CONVERGENCE OF DISTRIBUTIONAL SOLUTIONS

In this section we shall use the result of uniformly strong convergence
(Theorem 1) to prove the strong convergence to equilibrium and the veloc-
ity concentration for distributional solutions of Eq. (BBE) where the col-
lision kernels include the hard sphere model.

In view of existence we have so far only isotropic solutions. As seen
in the previous section that in our proofs of the strong convergence and
velocity concentration, the isotropic condition (on initial data) is only used
to insure the existence of conservative solutions that satisfy the entropy
identity and the moment production. Once these hold true, the isotropic
condition will never be used in our proofs. Therefore it is benefit to write
the isotropic version as a general version. Let F̄ be a finite positive Borel
measure on R+ ≡ [0,∞). By Riesz representation theorem, there exists a
unique finite positive Borel measure F on R3 such that

∫
R3
ψ(v)dF (v)=

∫
R+

(
1

4π

∫
S2
ψ(rω)dω

)
dF̄ (r) ∀ψ ∈C0(R3) . (7.1)
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Also, by Lebesgue–Radon–Nikodym theorem, there exist a unique 0� f̄ ∈
L1(R+), a unique finite positive Borel measure µ̄ on R+, and a Borel set
Z⊂ R+ satisfying mes(Z)= 0 , µ̄(R+ \Z)= 0, such that dF̄ (r)= f̄ (r)dr +
dµ̄(r). Let µ be the unique finite positive Borel measure on R3 determined
by µ̄ through the relation (7.1) and let f (v)= 1

4π |v|2 f̄ (|v|). Then

dF(v)=f (v)dv+dµ(v) (7.2)

0 �f ∈L1(R3) and µ is the singular part of F . By the uniqueness of the
Lebesgue decomposition, (f,µ) is uniquely determined by F (or equiva-
lently by F̄ ) through (7.1)–(7.2). Because of these correspondence, we will
not distinguish between F̄ and F , and we call the measure F (or dF(v))
an isotropic distribution on R3.

In order to introduce distributional solutions of Eq.(BBE) for the
kernel B(v− v∗,ω)= b(cos θ)|v− v∗|γ with 0 � γ � 1 we assume that b(τ)
satisfies

0�b(·)∈C([0,1]) ,
∫ 1

0
b(τ)dτ >0 , b(0)=0 . (7.3)

The condition b(0)= 0 is only used in a proof of a weak stability and
thus the existence of distributional solutions. Roughly speaking, if b(0) �=0,
then the smooth test functions multiplied by the collision kernel will not
be always continuous (see ref. 22). Note that the hard sphere model (1.3)
satisfies (7.3).

Distributional Solutions of Eq. (BBE) ([22]): Let b(·) satisfy (7.3),
B(v − v∗,ω) = b(cos θ)|v − v∗|γ with 0 � γ � 1. Let F0, Ft ∈ B+

2 (R
3) be

isotropic distributions for all t � 0. If Ft satisfies the following (i)–(iv),
then we say that Ft is a conservative isotropic distributional solution of
Eq. (BBE) with the initial datum F0.

(i) Ft |t=0 =F0 ,

(ii)
∫

R3(1, v, |v|2)dFt (v)=
∫

R3(1, v, |v|2)dF0(v) ∀ t�0 ,

(iii) the function t �→ ∫
R3 ϕ(|v|2)dFt (v) is in C1(R+) for all ϕ(r) ∈

C2
b (R+) (i.e. dk

drk
ϕ(r) for k=0,1,2 are all continuous and bounded on R+ )

and

(iv) the equation
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d

dt

∫
R3
ϕ(|v|2)dFt (v)=〈QB(Ft ), ϕ〉

holds for all t�0 and all ϕ(r)∈C2
b (R+) .

Here ϕ �→ 〈QB(Ft ), ϕ〉 (for every fixed t) is a bounded linear func-
tional constructed in ref. 22. In the following we do not use this func-
tional. What we shall use is only the existence of the distributional solu-
tion which is obtained by weak convergence of certain approximate L1

solutions.

Theorem 2. Let B(v−v∗,ω)=b(cos θ)|v−v∗|γ satisfy b(·)∈C([0,1]),
b(τ)>0 in τ ∈ (0,1), b(0)=0 and 0<γ �1. Let F0 ∈B+

2 (R
3) be an isotro-

pic distribution satisfying

dF0(v)=f0(v)dv+dµ0(v),

where 0 � f0 ∈ L1
2(R

3) is an isotropic function with
∫

R3 f0(v)dv > 0
and µ0 ∈ B+

2 (R
3) is the singular part of F0. Let N = ∫

R3 dF0(v) ,E =∫
R3 |v|2dF0(v) , and let T , T c, and 
a,b be the temperatures and the Bose–

Einstein distribution corresponding to N and E. Then there exists a con-
servative isotropic distributional solution Ft of Eq. (BBE) with the kernel
B and Ft |t=0 =F0, such that for the Lebesgue decomposition

dFt (v)=ft (v)dv+dµt (v),

where 0 � ft ∈ L1
2(R

3) and µt ∈ B+
2 (R

3) is the singular part of Ft , the
following (I) and (II.1)–(II.3) hold:

(I) Ft is a weak limit of a subsequence {f nj (·, t)}∞
j=1 of L1 approxi-

mate solutions {f n(·, t)}∞
n=1 of Eq. (BBE) with the cutoff kernels (6.1) for

K=n∈K={1,2,3, . . . }. Here the weak limit means

lim
j→∞

∫
R3
ϕ(v)f nj (v, t)dv=

∫
R3
ϕ(v)dFt (v) ∀ϕ ∈Cc(R3) , ∀ t�0 .

(7.4)

(II.1) For any temperature ( T �T c or T <T c ) and for all t�0

0�S(
a,b)−S(ft )�Cb
(
‖ft −
a,b‖L1

2(\0)

)1/2
, (7.5)∫

R3
|v|2dµt (v)�‖ft −
a,b‖L1

2(\0)�Cb[S(
a,b)−S(ft )]1/2 , (7.6)
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and

S(ft )→S(
a,b) ( t→∞ ) . (7.7)

(II.2) If T �T c, then for all t�0

∫
R3
(1+|v|2)dµt (v)�‖ft −
a,b‖L1

2
�Cb[S(
a,b)−S(ft )]1/6 . (7.8)

Here, in (II.1)–(II.2), Cb =C0((1/b)1/4 + (1/b)9/4) is the constant given in
Lemma 4.

(II.3) If T <T c, then there exists 0<t0<∞ such that for all t� t0

1− (T /T c)3/5 +Cδ(t)� 1
N

∫
|v|�δ(t)

dFt (v)�1− (T /T c)3/5, (7.9)

where C=5π/(bN) and

δ(t)= (‖ft −
1,b‖L1
2(\0))

1/4 →0 ( t→∞ ) .

Remark. In the case µ0 = 0, i.e. there is no velocity concentration
at the initial state, the theorem insures that the single point concentration
still occurs as t→∞ even f0 is smooth. On the other hand, for the case
f0 = 0, i.e. F0 is totaly singular (with respect to the Lebesgue measure),
there is so far no result on the long time behavior of the corresponding
solution Ft .

Proof of Theorem 2. Part (I): We need to construct approximate
L1-solutions f n of Eq. (BBE) with initial data f n0 which satisfy the condi-
tion (6.2)–(6.3) in Theorem 1 for K=n. To do this we consider dν0(v)=
1
2f0(v)dv+dµ0(v). By assumption on f0 we have

∫
R3 |v|2dν0(v)>0 so that

the Mehler transform can be used to construct isotropic functions 0�hn0 ∈
L1

2(R
3) satisfying (see Lemma 6 in ref. 22)

∫
R3
(1, v, |v|2)hn0(v)dv =

∫
R3
(1, v, |v|2)dν0(v) , n=1,2,3, . . .

lim
n→∞

∫
R3
ϕ(v)hn(v)dv =

∫
R3
ϕ(v)dν0(v) ∀ϕ ∈C∩L∞

−2(R
3) .
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Here C∩L∞
−2(R

3) is given in (4.7). Let f n0 (v)= 1
2f0(v)+hn0(v) . Then

∫
R3
(1, v, |v|2)f n0 (v)dv= (N,0,E) , n=1,2,3, . . . (7.10)

lim
n→∞

∫
R3
ϕ(v)f n0 (v)dv=

∫
R3
ϕ(v)dF0(v) ∀ϕ ∈C∩L∞

−2(R
3) .

Moreover by monotonicity (4.3), f n0 � 1
2f0, and

∫
R3 f0(v)dv>0 we have

inf
n�1

S(f n0 )�S(
1
2
f0)>0 . (7.11)

For any n, let Bn(v− v∗,ω) be the cutoff kernel given in (6.1) with K =
n, and let f n be the unique conservative isotropic solution of Eq. (BBE)
with the kernels Bn and f n|t=0 = f n0 . By the weak stability and the exis-
tence results proved in ref. 22, there exist a subsequence {f nj }∞

j=1 of {f n}
and a conservative isotropic distributional solution Ft of Eq. (BBE) with
Ft |t=0 =F0, such that (7.4) holds. Also by (7.10)–(7.11) and Theorem 1,
{f n} has all properties listed in Theorem 1 for K=n∈K={1,2,3, . . . }.

Part (II). Let dFt (v)= ft (v)dv+ dµt (v) be the Lebesgue decomposi-
tion as stated in the theorem. Since Ft conserves the mass and energy, it
follows from Proposition 1 that for any temperature and for all t�0

∫
R3

|v|2ft (v)dv�
∫

R3
|v|2dFt (v)=E=

∫
R3

|v|2
a,b(v)dv . (7.12)

Moreover T <T c implies a=1; T �T c implies that for all t�0

∫
R3
ft (v)dv�

∫
R3
dFt (v)=N =

∫
R3

a,b(v)dv . (7.13)

Therefore the conditions in Part (2) of Lemma 4 are all satisfied for ft and

a,b. Furthermore, the equality in (7.12) implies that

∫
R3

|v|2dµt (v)=
∫

R3
|v|2(
a,b−ft )dv�‖ft −
a,b‖L1

2(\0) , (7.14)
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while the equalities in (7.12) and (7.13) imply

∫
R3
(1+|v|2)dµt (v)=

∫
R3
(1+|v|2)(
a,b−ft )dv�‖ft −
a,b‖L1

2
.

(7.15)

Thus by Lemma 4 ((4.14)–(4.16)) and (7.14)–(7.15) we conclude that the
estimates (7.5), (7.6) ( for any temperature) and (7.8) ( for T � T c) hold
true.

Next we prove (7.7). By weak convergence (7.4) and Lemma 3 we
have

lim sup
j→∞

S(f nj (t))�S(ft )�S(
a,b) ∀ t�0 .

By Theorem 1, this implies

0�S(
a,b)−S(ft )� sup
n�1

[S(
a,b)−S(f n(t))]→0 ( t→∞ ) .

Finally we prove (7.9). Suppose T <T c. Then a=1. Let δ(t) be given
in the theorem. Note that if δ(t)=0 for some t�0, then ft =
1,b a.e. on
R3, so that dFt (v)=
1,b(v)dv+dµt (v), and by (7.14) the measure µt con-
centrates at v=0. Thus by conservation of mass we deduce that

N =
∫

R3
dFt (v)=

∫
R3

1,b(v)dv+µt({0})

which implies µt({0})=N0 =N(1− (T /T c)3/5) and hence

1
N
Ft({0})= 1

N
µt({0})=1− (T /T c)3/5 .

This means that (7.9) holds for δ(t)= 0. Therefore to prove (7.9) we can
assume that δ(t)>0 for any given t . We compute

∫
|v|�δ(t)

dFt (v) = N0 + I (t) ,

I (t) =
∫

|v|�δ(t)

1,bdv+

∫
|v|>δ(t)

(
1,b−ft )dv−
∫

|v|>δ(t)
dµt (v) ,
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and, by (7.14),

∫
|v|>δ(t)

dµt (v)�
1

δ2(t)

∫
R3

|v|2dµt (v)� 1
δ2(t)

‖ft −
1,b‖L1
2(\0)= δ2(t) .

The rest of proof is the same as that for Part (II.3) of Theorem 1 with the
same constant C=5π/(bN) .
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